翻訳と辞書
Words near each other
・ Graph labeling
・ Graph literacy
・ Graph manifold
・ Graph minor
・ Graph Modelling Language
・ Graph Nobel
・ Graph of a function
・ Graph of desire
・ Graph of groups
・ Graph operations
・ Graph paper
・ Graph partition
・ Graph pax
・ Graph pebbling
・ Graph power
Graph product
・ Graph property
・ Graph realization problem
・ Graph reduction
・ Graph reduction machine
・ Graph rewriting
・ Graph sandwich problem
・ Graph state
・ Graph structure theorem
・ Graph Style Sheets
・ Graph theory
・ Graph theory in enzymatic kinetics
・ Graph toughness
・ Graph traversal
・ Graph-based access control


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Graph product : ウィキペディア英語版
Graph product
In mathematics, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs ''G''1 and ''G''2 and produces a graph ''H'' with the following properties:
* The vertex set of ''H'' is the Cartesian product ''V''(''G''1) × ''V''(''G''2), where ''V''(''G''1) and ''V''(''G''2) are the vertex sets of ''G''1 and ''G''2, respectively.
* Two vertices (''u''1, ''u''2) and (''v''1, ''v''2) of ''H'' are connected by an edge if and only if the vertices ''u''1, ''u''2, ''v''1, ''v''2 satisfy conditions of a certain type (see below).
The following table shows the most common graph products, with \sim; denoting “is connected by an edge to”, and \not\sim denoting non-connection. The operator symbols listed here are by no means standard, especially in older papers.
\rightarrow J_
|
|-
| Tensor product
(Categorical product)
G \times H
| u_1 \sim v_1 and  u_2 \sim v_2
| G_ \times H_ \rightarrow J_
|
|-
| Lexicographical product
G \cdot H or G()
| ''u''1 ∼ ''v''1
or
( ''u''1 = ''v''1 and ''u''2 ∼ ''v''2 )
| G_ \cdot H_ \rightarrow J_
|
|-
| Strong product
(Normal product, AND product)
G \boxtimes H
| ( ''u''1 = ''v''1 and ''u''2 ∼ ''v''2 )
or
( ''u''1 ∼ ''v''1 and ''u''2 = ''v''2 )
or
( ''u''1 ∼ ''v''1 and ''u''2 ∼ ''v''2 )
| G_ \boxtimes H_ \rightarrow J_
|
|-
| Co-normal product
(disjunctive product, OR product)
G
* H
| ''u''1 ∼ ''v''1
or
''u''2 ∼ ''v''2
|
|
|-
| Modular product
| (u_1 \sim v_1 \text u_2 \sim v_2)
or

(u_1 \not\sim v_1 \text u_2 \not\sim v_2)
|
|
|-
| Rooted product
| see article
| G_ \cdot H_ \rightarrow J_
|
|-
| Kronecker product
| see article
| see article
| see article
|-
| Zig-zag product
| see article
| see article
| see article
|-
| Replacement product
|
|
|
|-
| Homomorphic product
G \ltimes H
| (u_1 = v_1)
or
(u_1 \sim v_1 \text u_2 \not\sim v_2)
|
|
|}
In general, a graph product is determined by any condition for (''u''1, ''u''2) ∼ (''v''1, ''v''2) that can be expressed in terms of the statements ''u''1 ∼ ''v''1, ''u''2 ∼ ''v''2, ''u''1 = ''v''1, and ''u''2 = ''v''2.
==Mnemonic==

Let K_2 be the complete graph on two vertices (i.e. a single edge). The product graphs K_2 \square K_2, K_2 \times K_2, and K_2 \boxtimes K_2 look exactly like the glyph representing the operator. For example, K_2 \square K_2 is a four cycle (a square) and K_2 \boxtimes K_2 is the complete graph on four vertices. The G() notation for lexicographic product serves as a reminder that this product is not commutative.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Graph product」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.